Clasificaciòn De Los Seres Vivos.

En biología, identificación, denominación y agrupamiento de organismos en un sistema establecido. Las numerosas formas de vida que existen deben ser nombradas y organizadas de manera ordenada, de modo que los biólogos de todo el mundo puedan estar seguros de que conocen el organismo exacto que es objeto de estudio.
La definición de los grupos de organismos debe basarse en la selección de características importantes, o rasgos compartidos, responsables de que los miembros de cada grupo sean semejantes entre sí, y diferentes de los de otros grupos. Los métodos actuales de clasificación tratan también de reunir los grupos en categorías, de modo que éstas reflejen los procesos evolutivos que subyacen bajo las similitudes y diferencias que existen entre los organismos. Dichas categorías forman un tipo de pirámide, o jerarquía, donde los distintos niveles representan los diferentes grados de relación evolutiva.
La clasificación de plantas y animales por semejanzas estructurales fue establecida sobre bases sistemáticas firmes por el biólogo sueco Carl von Linne o Linneo.
Puesto muchas semejanzas estructurales dependen de relaciones de evolución, la clasificación moderna de los organismos es en muchos puntos semejante a la de Linneo basada en similitudes estructurales lógicas.
La unidad de clasificación para plantas y animales es la especie. Este término es difícil de definir pero podemos aproximarnos si decimos que es un grupo de individuos semejantes en cuanto a características estructurales y funcionales, que en la naturaleza sólo se reproducen entre sí y tienen un antecesor en común. Las especies vecinas se agrupan en géneros. El género es una unidad superior.
Los nombres científicos de los organismos constan de dos términos: el género y la especie en latín. Este sistema es el llamado binomial.
Así como varias especies se agrupan en géneros, los géneros semejantes se reúnen en familias , A su vez, éstas se agrupan en ordenes y estos en clases . Un conjunto de clases puede llamarse división si estamos estudiando las plantas o filo si se trata de animales. Los filos (o divisiones) son las grandes divisiones de los reinos.
Dentro de los seres vivos se reconocen dos reinos, el Vegetal y el Animal, ya desde que Aristóteles estableció la primera taxonomía en el siglo IV a.C. Las plantas con raíces son tan diferentes en su forma de vida y en su línea evolutiva de los animales móviles y que ingieren alimentos, que el concepto de los dos reinos ha permanecido intacto hasta hace poco. Sólo en siglo XIX, bastante después de saber que los organismos unicelulares no se ajustaban adecuadamente a ninguna de las dos categorías, se propuso que éstos formaran un tercer reino, Protista. Mucho tiempo después de que se descubriera que la fotosíntesis era la forma básica de nutrición de las plantas, los hongos, que se alimentan por absorción, continuaban siendo clasificados como plantas debido a su aparente modo de crecimiento mediante raíces.
En la actualidad, debido al gran desarrollo que han experimentado las técnicas para estudiar la célula, se ha puesto de manifiesto que la división principal de los seres vivos no es entre vegetales y animales, sino entre organismos cuyas células carecen de envoltura nuclear y organismos cuyas células tienen membrana nuclear. Los primeros se denominan procariotas (anteriores al núcleo) y los segundos eucariotas (núcleos verdaderos). Las células procarióticas también carecen de orgánulos, mitocondrias, cloroplastos, flagelos especializados, y otras estructuras celulares especiales, alguna de las cuales aparece en las células eucarióticas. Las bacterias y las algas verdeazuladas son células procarióticas, y las taxonomías modernas las han agrupado en un cuarto reino, Monera, también conocido como el reino de los Procariotas.
Las células eucarióticas se desarrollaron con posterioridad y pueden haber derivado de asociaciones simbióticas de las células procarióticas. El reino Protistaestá compuesto por diversos organismos unicelulares que viven aislados o formando colonias. Se cree que cada uno de los reinos multicelulares se ha desarrollado más de una vez a partir de antecesores protistas. El reino Animal comprende los organismos que son multicelulares, tienen sus células organizadas en diferentes tejidos, son móviles o tienen movilidad parcial gracias a tejidos contráctiles, y digieren alimentos en su interior. El reino Vegetal o de las Plantas está formado por organismos multicelulares que en general tienen paredes celulares y que contienen cloroplastos donde producen su propio alimento mediante fotosíntesis. El quinto reino, los Hongos, incluye los organismos multicelulares o multinucleados que digieren los alimentos externamente y los absorben a través de superficies protoplasmáticas tubulares denominadas hifas (de las que están formados sus cuerpos).
La clasificación de los seres vivos en cinco reinos (ver tabla en la página siguiente), está basada en tres niveles de organización: el primitivo nivel procariota; el eucariota, relativamente simple y ante todo unicelular, y el complejo multicelular eucariota. Dentro de este último nivel, las tres líneas evolutivas principales se basan en tipos de nutrición diferentes, y se expresan en los distintos tipos de organización tisular característicos de los animales, vegetales y hongos.     La clasificación de los seres vivos es motivo de controversia desde hace mucho tiempo; estos tres esquemas son algunos de los utilizados actualmente. Arriba: El sistema aristotélico sólo reconoce plantas y animales, que diferencia por el movimiento, el mecanismo de alimentación y la forma de crecimiento. Este sistema agrupa procariotas, algas y hongos con las plantas, y protozoos móviles capaces de alimentarse con los animales. Centro:El perfeccionamiento de las técnicas y los materiales de laboratorio puso de manifiesto las diferencias entre células procarióticas y eucarióticas y determinó una nueva clasificación que las reflejaba. Abajo:En época más reciente se han admitido cinco reinos que tienen en cuenta la organización celular y la forma de nutrición.






Clasificaciòn De Whittaker y Woese
En el ámbito de la Biología, reino es cada una de las grandes subdivisiones en que se consideran distribuidos los seres vivos, por razón de sus caracteres comunes. En la actualidad, reino es el segundo nivel de clasificación por debajo del dominio. La clasificación más aceptada es el sistema de los tres dominios que se presenta a continuación:[
DominiosReinos
Bacteria
Archaea
EukaryaAnimaliaPlantaeFungiProtista


Puesto que Archaea y Bacteria no se han subdividido, se pueden considerar tanto dominios como reinos. Este esquema fue propuesto por Woese en 1990 al notar las grandes diferencias que a nivel molecular presentan arqueas (archaea) y bacterias, a pesar de que ambos grupos están compuestos por organismos con células procariotas. El resto de los reinos comprende los organismos compuestos por células eucariotas, esto es, animales, plantas, hongos (fungi) y protistas. El reino protista comprende una colección de organismos, en su mayoría unicelulares, antes clasificados como «protozoos», «algas» de ciertos tipos y «mohos mucilaginosos».

 


 Historia

Históricamente, la primera organización en reinos se debe a Aristóteles (s.IV A.C.), que diferencia todas las entidades vivas de la naturaleza en los reinos animal y vegetal. Linneo[3] también distinguió estos dos reinos de seres vivos y además trató a los minerales, colocándolos en un tercer reino, Mineralia. Además, introdujo la nomenclatura binomial para referir a las especies y dividió los reinos en filos, los filos en clases, las clases en órdenes, los órdenes en familias, las familias en géneros y los géneros en especies. Ernst Haeckel[4] en 1866 fue el primero en distinguir entre organismos unicelulares (protistas) y pluricelulares (plantas y animales). Poco a poco se puso de manifiesto la importancia de la distinción entre procariotas y eucariotas y se popularizó la propuesta de Edouard Chatton[5] de 1937.

 Sistema de los cinco reinos

Robert Whittaker reconoce el reino adicional de los hongos (Fungi). El resultado fue el sistema de los 5 reinos, propuesto en 1969, que se convirtió en un estándar muy popular y que, con algunas modificaciones, aún se utiliza en muchas obras o constituye la base para nuevos sistemas multi-reino. Se basa principalmente en las diferencias en materia de nutrición: sus Plantae son en su mayoría pluricelulares autótrofos, sus Animalia, pluricelulares heterótrofos, y sus Fungi, pluricelulares saprofitos. Los otros dos reinos, Protista y Monera (procariotas), incluyen organismos unicelulares o coloniales.

 Sistema de los tres dominios

Artículo principal: Sistema de los tres dominios
En la década de 1980 se produjo un énfasis en la filogenia, lo que llevó a la redefinición de los reinos como grupos monofiléticos, esto es, como grupos de organismos que han evolucionado a partir de un antepasado común. Los reinos Animalia, Plantae y Fungi fueron reducidos a los grupos básicos de organismos estrechamente relacionados y el resto de grupos fue trasladado al reino Protista. Sobre la base de estudios de ARN, Carl Woese dividió a los procariotas (reino Monera) en dos reinos, denominados Eubacteria y Archaebacteria. Estos dos reinos, junto con plantas, animales, hongos y protistas constituye el sistema de los seis reinos. Este sistema se han convertido en estándar en muchas obras.
Eubacteria y Archaebacteria fueron renombrados a Bacteria y Archaea, y para remarcar la profunda separación filogenética entre bacterias, arqueas y eucariotas, en 1990 Woese establece el sistema de los tres dominios.Según este sistema, el más aceptado actualmente, los seres vivos se dividen en los dominios Bacteria, Archaea y Eukarya, y a su vez Eukarya se divide en los reinos Protista, Fungi, Plantae y Animalia.

 Otras propuestas

Desde entonces, se han propuesto multitud de nuevos reinos eucariotas, pero la mayoría fueron rápidamente invalidados, reclasificados a nivel de filos o clases o abandonados. El único que todavía es usado por algunos autores es el reino Chromista propuesto por Cavalier-Smith para abarcar organismos tales como algas pardas, algas verde-amarillas, algas doradas, diatomeas, oomicetos y otros relacionados. Esta propuesta no ha recibido mucha atención, aunque la cuestión de las relaciones y división en grupos de los seres vivos sigue siendo todavía materia de discusión.


Otros niveles de clasificación

Debido a la elevada variedad de la vida se han establecido numerosos niveles de clasificación denominados taxones. El nivel de Reino era hasta hace poco el nivel superior de la clasificación biológica. En las clasificaciones modernas el nivel superior es el Dominio o Imperio; cada uno de los cuales se subdivide en Reinos, los Reinos, a su vez, pueden organizarse en Filos, etc. Los niveles más importantes de la clasificación biológica se muestran a continuación:
  • Dominio
  • Reino
  • Filo o Phylum (animales y otros) o División (plantas)
  • Clase
  • Orden
  • Familia
  • Género
  • Especie



    *REINO MONERA: son unicelulares y microscópicas. Ejem: Bacterias.
    *REINO PROTISTA: unicelulares y multicelulares, son microscópicos. Ejem: euglena, chlamydomonas, ameba, paramecio, etc.
    *REINO FUNGI: son todos los hongos, hay microscópicos y macroscópicos. Ejem: el moho de pan, hongos comestibles, venenosos, alucinógenos, hongos de palo, paragüitas, hongos de piel o pie, etc.
    *REINO VEGETAL: son todas las plantas, son pluricelulares fotosintéticos, en la cadena alimenticia son productoras, se dividen en angiospermas y gimnospermas. Ejem: algas, musgos, helechos, pino, mango, etc.
    *REINO ANIMAL: son multicelulares, son los consumidores. Se dividen en invertebrados (sin huesos) y vertebrados (con huesos). Ejem: ácaros, lombriz, erizo, mosca, lagartija, pes, rana, aves, etc.
 Woese en 1977 agrupa los seres vivos en seis Reinos: Eubacterias, Arqueobacterias, Protista, Fungi, Vegetal y Animal. A través de sus investigaciones llega a la conclusión de que las arqueobacterias son procariotas pero no bacterias. En 1990 propone tres Dominios: Bacterias, Arqueas y Eucariotas. El Dominio es de categoría taxonómica superior al Reino.









Bacteria

Las bacterias son microorganismos unicelulares que presentan un tamaño de algunos micrómetros de largo (entre 0,5 y 5 μm, por lo general) y diversas formas incluyendo esferas, barras y hélices. Las bacterias son procariotas y, por lo tanto, a diferencia de las células eucariotas (de animales, plantas, etc.), no tienen núcleo ni orgánulos internos. Generalmente poseen una pared celular compuesta de peptidoglicano. Muchas bacterias disponen de flagelos o de otros sistemas de desplazamiento y son móviles. Del estudio de las bacterias se encarga la bacteriología, una rama de la microbiología.
Las bacterias son los organismos más abundantes del planeta. Son ubicuas, se encuentran en todos los hábitats terrestres; crecen hasta en los más extremos como en los manantiales de aguas calientes y ácidas, en desechos radioactivos,[1] en las profundidades tanto del mar y como de la corteza terrestre. Algunas bacterias pueden incluso sobrevivir en las condiciones extremas del espacio exterior. Se estima que hay en torno a 40 millones de células bacterianas en un gramo de tierra y un millón de células bacterianas en un mililitro de agua dulce. En total, se calcula que hay aproximadamente 5×1030 bacterias en el mundo.[2]
Las bacterias son imprescindibles para el reciclaje de los elementos, pues muchos pasos importantes de los ciclos biogeoquímicos dependen de éstas. Como ejemplo cabe citar la fijación del nitrógeno atmosférico. Sin embargo, solamente la mitad de los filos conocidos de bacterias tienen especies que se pueden cultivar en el laboratorio,[3] por lo que una gran parte (se supone que cerca del 90%) de las especies de bacterias existentes todavía no ha sido descrita.
En el cuerpo humano hay aproximadamente diez veces tantas células bacterianas como células humanas, con una gran cantidad de bacterias en la piel y en el tracto digestivo.[4] Aunque el efecto protector del sistema inmune hace que la gran mayoría de estas bacterias sea inofensiva o beneficiosa, algunas bacterias patógenas pueden causar enfermedades infecciosas, incluyendo cólera, sífilis, lepra, tifus, difteria, escarlatina, etc. Las enfermedades bacterianas mortales más comunes son las infecciones respiratorias, con una mortalidad sólo para la tuberculosis de cerca de dos millones de personas al año.[5]
En todo el mundo se utilizan antibióticos para tratar las infecciones bacterianas. Los antibióticos son efectivos contra las bacterias ya que inhiben la formación de la pared celular o detienen otros procesos de su ciclo de vida. También se usan extensamente en la agricultura y la ganadería en ausencia de enfermedad, lo que ocasiona que se esté generalizando la resistencia de las bacterias a los antibióticos. En la industria, las bacterias son importantes en procesos tales como el tratamiento de aguas residuales, en la producción de queso, yogur, mantequilla, vinagre, etc., y en la fabricación de medicamentos y de otros productos químicos





 

Archaea

Las arqueas o arqueobacterias, (Et: del griego ἀρχαῖα, arjaía: las antiguas, singular: arqueon, arqueonte o arqueota) son un grupo de microorganismos unicelulares pertenecientes al dominio Archaea. El término arquibacteria es una denominación desestimada. Las arqueas, como las bacterias, son procariotas[1] que carecen de núcleo celular o cualquier otro orgánulo dentro de las células. En el pasado, se las consideró un grupo inusual de bacterias, pero como tienen una historia evolutiva independiente y presentan muchas diferencias en su bioquímica respecto al resto de formas de vida, actualmente se las clasifica como un dominio distinto en el sistema de tres dominios.[2] En este sistema, presentado por Carl Woese, las tres ramas evolutivas principales son las arqueas, las bacterias y los eucariotas. Las arqueas están subdivididas en cuatro filos, de los cuales dos, Crenarchaeota y Euryarchaeota, son estudiados más intensivamente.
En general, las arqueas y bacterias son bastante similares en forma y en tamaño, aunque algunas arqueas tienen formas muy inusuales, como las células planas y cuadradas de Haloquadra walsbyi. A pesar de esta semejanza visual con las bacterias, las arqueobacterias poseen genes y varias rutas metabólicas que son más cercanas a las de los eucariotas, en especial en las enzimas implicadas en la transcripción y la traducción. Otros aspectos de la bioquímica de las arqueobacterias son únicos, como los éteres lipídicos de sus membranas celulares. Las arqueas explotan una variedad de recursos mucho mayores que los eucariotas, desde compuestos orgánicos comunes como los azúcares, hasta el uso de amoníaco,[3] iones de metales o incluso hidrógeno como nutrientes. Las arqueas tolerantes a la sal (las halobacterias) utilizan la luz solar como fuente de energía, y otras especies de arqueas fijan carbono,[4] sin embargo, a diferencia de las plantas y las cianobacterias, no se conoce ninguna especie de arquea que sea capaz de ambas cosas. Las arqueas se reproducen asexualmente y se dividen por fisión binaria,[5] fragmentación o gemación; a diferencia de las bacterias y los eucariotas, no se conoce ninguna especie de arquea que forme esporas.






Eukaryota

En taxonomía y biología, Eukarya o Eukaryota (palabras con etimología del griego: εὖ eu —“bueno“, “bien“— y κάρυον karyon —“nuez“, “carozo“, “núcleo“—) es el dominio que incluye los organismos celulares con núcleo verdadero. La castellanización adecuada del término es eucariontes.[1] Estos organismos constan de una o más células eucariotas, abarcando desde organismos unicelulares hasta verdaderos pluricelulares en los cuales las diferentes células se especializan para diferentes tareas y que, en general, no pueden sobrevivir de forma aislada. El resto de los seres vivos son unicelulares procariotas y se dividen los dominios Archaea y Bacteria.
Pertenecen al dominio Eukarya animales, plantas, hongos, así como varios grupos denominados colectivamente protistas. Todos ellos presentan semejanzas a nivel molecular (estructura de los lípidos, proteínas y genoma) y comparten un origen común.

Eucariontes
FluorescentCells.jpg
Clasificación científica
Dominio:Eukarya
Reinos
Animalia (Animales)
Fungi (Hongos)
Plantae (Plantas)
Protista (Protistas)

Metabolismo





Cada vez que das un mordisco a un bocadillo o un sorbo a un batido de frutas, tu cuerpo tiene que trabajar duro para procesar los nutrientes que has ingerido. Mucho después de que dejes el plato limpio como una patena y digieras los alimentos, los nutrientes que habrás ingerido se convertirán en los componentes básicos y combustible que necesita tu cuerpo para funcionar y crecer. Tu cuerpo obtiene la energía que necesita de los alimentos a través de un proceso denominado metabolismo.

¿En qué consiste el metabolismo?

El metabolismo es un conjunto de reacciones químicas que tienen lugar en las células del cuerpo. El metabolismo transforma la energía que contienen los alimentos que ingerimos en el combustible que necesitamos para todo lo que hacemos, desde movernos hasta pensar o crecer. Proteínas específicas del cuerpo controlan las reacciones químicas del metabolismo, y todas esas reacciones químicas están coordinadas con otras funciones corporales. De hecho, en nuestros cuerpos tienen lugar miles de reacciones metabólicas simultáneamente, todas ellas reguladas por el organismo, que hacen posible que nuestras células estén sanas y funcionen correctamente.
El metabolismo es un proceso constante que empieza en el momento de la concepción y termina cuando morimos. Es un proceso vital para todas las formas de vida -no solo para los seres humanos. Si se detiene el metabolismo en un ser vivo, a este le sobreviene la muerte.
He aquí un ejemplo de cómo funciona el proceso del metabolismo en los seres humanos -y empieza con las plantas. En primer lugar, las plantas verdes obtienen energía a partir de la luz solar. Las plantas utilizan esa energía y una molécula denominada clorofila (que les proporciona su color verde característico) para fabricar azúcares mediante el agua y el dióxido de carbono. Este proceso se denomina fotosíntesis y probablemente ya lo has estudiado en clase de biología.

Cuando las personas y los animales ingieren plantas (o, si son carnívoros, ingieren carne de animales que se alimentan de plantas), incorporan esa energía (en forma de azúcar), junto con otras sustancias químicas fundamentales para fabricar células. El siguiente paso consiste en descomponer el azúcar a fin de que la energía producida pueda ser distribuida a todas las células del cuerpo, las cuales la utilizarán como combustible.
Después de ingerir un alimento, unas moléculas presentes en el sistema digestivo denominadas enzimas descomponen las proteínas en aminoácidos, las grasas en ácidos grasos y los hidratos de carbono en azúcares simples (como la glucosa). Aparte del azúcar, el cuerpo puede utilizar tanto los aminoácidos como los ácidos grasos como fuentes de energía cuando los necesita. Estos compuestos son absorbidos por la sangre, que es la encargada de transportarlos a las células. Una vez en el interior de las células, intervienen otras enzimas para acelerar o regular las reacciones químicas necesarias pata "metabolizar" esos compuestos. Durante este proceso, la energía procedente de los compuestos se puede liberar para que la utilice el cuerpo o bien almacenar en los tejidos corporales, sobre todo en el hígado, los músculos y la grasa corporal.
De este modo, el metabolismo es una especie de malabarismo en el que intervienen simultáneamente dos tipos de actividades: la fabricación de tejidos corporales y la creación de reservas de energía, por un lado, y la descomposición de tejidos corporales y de reservas de energía para generar el combustible necesario para las funciones corporales, por el otro:
  • El anabolismo, o metabolismo constructivo, consiste en fabricar y almacenar: es la base del crecimiento de nuevas células, el mantenimiento de los tejidos corporales y la creación de reservas de energía para uso futuro. Durante el anabolismo, moléculas simples y de tamaño reducido se modifican para construir moléculas de hidratos de carbono, proteínas y grasas más complejas y de mayor tamaño.
  • El catabolismo, o metabolismo destructivo, es el proceso mediante el cual se produce la energía necesaria para todas las actividades. En este proceso, las células descomponen moléculas de gran tamaño (mayoritariamente de hidratos de carbono y grasas) para obtener energía. La energía producida, aparte de ser el combustible necesario para los procesos anabólicos, permite calentar el cuerpo, moverlo y contraer los músculos. Cuando descomponen compuestos químicos en sustancias más simples, los productos de desecho liberados en el proceso son eliminados al exterior a través de la piel, los riñones, los pulmones y los intestinos.

    Varias hormonas fabricadas por el sistema endocrino se encargan de controlar la velocidad y el sentido (“ana” o “cata”) del metabolismo. La tiroxina, una hormona producida y segregada por la glándula tiroidea, desempeña un papel fundamental en la determinación de la velocidad a la que se producen las reacciones químicas del metabolismo en el cuerpo de una persona.
    Otra glándula, el páncreas, secreta o segrega hormonas que ayudan a determinar si la principal actividad metabólica del cuerpo en un momento dado será anabólica o catabólica. Por ejemplo, después de una comida principal generalmente predomina el anabolismo sobre el catabolismo porque el hecho de comer aumenta la concentración de glucosa -el principal combustible del cuerpo- en sangre. El páncreas capta la mayor concentración de glucosa y libera la hormona insulina, que indica a las células que aumenten sus actividades anabólicas.
    El metabolismo es un proceso químico complejo, por lo que no es de extrañar que mucha gente tienda a simplificarlo, concibiéndolo meramente como algo que determina la facilidad con que nuestro cuerpo gana o pierde peso. Es aquí donde entran en juego las calorías. Una caloría es una unidad que mide cuánta energía proporciona al cuerpo un alimento en concreto. Una barrita de chocolate tiene más calorías que una manzana, lo que significa que aporta al cuerpo más energía -y a veces más de la que este necesita. Del mismo modo que un coche almacena la gasolina en el depósito hasta que la necesita para alimentar al motor, el cuerpo almacena calorías -principalmente en forma de grasa. Si llenas excesivamente el depósito de gasolina de un coche, esta desbordará el depósito y se derramará sobre la calzada. Del mismo modo, si una persona ingiere demasiadas calorías, estas "se desbordarán" en forma de exceso de grasa corporal.
    La cantidad de calorías que quema una persona en un día está influida por la cantidad de ejercicio físico que hace, la cantidad de grasa y músculo que contiene su cuerpo y su metabolismo basal. El metabolismo basal es una medida de la velocidad a la que una persona “quema" energía, en forma de calorías, en estado de reposo, es decir, mientras descansa. El metabolismo basal puede desempeñar un papel en la tendencia de una persona a ganar peso. Por ejemplo, una persona con un metabolismo basal lento (es decir, que quema pocas caloría mientras duerme) tenderá a ganar más peso que una persona de la misma talla con un metabolismo basal promedio que coma la misma cantidad de alimento y haga la misma cantidad de ejercicio.


    ¿Qué factores influyen en el metabolismo basal de una persona? Hasta cierto punto, el metabolismo basal se hereda -se transmite de padres a hijos a través de los genes. Pero a veces los problemas de salud pueden repercutir sobre el metabolismo basal (ver más adelante). Pero, de hecho, una persona puede modificar hasta cierto punto su metabolismo basal de varias formas diferentes. Por ejemplo, si una persona empieza a hacer más ejercicio, no solo quemará más calorías directamente a través de la actividad física sino que el hecho de estar más en forma también acelerará su metabolismo basal. El metabolismo basal también está influido por la composición corporal -las personas que tienen más músculo y menos grasa suelen tener un metabolismo basal más rápido.

    Problemas que pueden afectar al metabolismo

    La mayor parte del tiempo el metabolismo funciona eficazmente sin que ni siquiera tengamos que pensar en ello. Pero a veces el metabolismo de una persona puede provocar bastantes estragos en forma de trastorno metabólico. En sentido amplio, un trastorno metabólico es cualquier afección provocada por una reacción química anómala en las células del cuerpo. La mayoría de trastornos metabólicos obedecen bien a la existencia de concentraciones anómalas de enzimas u hormonas en sangre o bien a problemas en el funcionamiento de esas enzimas u hormonas. Cuando determinadas sustancias químicas no se pueden metabolizar o se metabolizan de forma defectuosa, esto puede provocar una acumulación de sustancias tóxicas en el cuerpo o una deficiencia de sustancias necesarias para el funcionamiento normal del cuerpo; ambas situaciones pueden provocar síntomas graves.
    Entre las enfermedades y trastornos metabólicos más frecuentes se incluyen los siguientes:
    Hipertiroidismo. El hipertiroidismo se debe a una glándula tiroidea excesivamente activa. Esta glándula segrega una cantidad excesiva de tiroxina, lo que acelera el metabolismo basal. Provoca síntomas como pérdida de peso, aceleración de la frecuencia cardiaca, hipertensión arterial, ojos saltones e hinchazon en el cuello provocada por el agrandamiento de la glándula tiroidea (bocio). Esta enfermedad se puede controlar mediante medicación, cirugía o radioterapia.
    Hipotiroidismo. El hipotiroidismo se debe a una glándula tiroidea inexistente o poco reactiva y suele ser consecuencia de un problema evolutivo o de una enfermedad que destruye la glándula tiroidea. Esta glándula segrega una cantidad insuficiente de tiroxina, lo que ralentiza el metabolismo basal. Cuando el hipotiroidismo no se trata puede provocar problemas cerebrales y de crecimiento. El hipotiroidismo ralentiza los procesos corporales y provoca fatiga, descenso de la frecuencia cardíaca, ganancia de peso excesiva y estreñimiento. Los jóvenes a quienes les diagnostican este trastorno se pueden tratar con hormona tiroidea administrada por vía oral (por boca) a fin de que tengan una concentración normal de esta hormona en el cuerpo.
    Errores congénitos del metabolismo. Algunas enfermedades metabólicas se heredan. Estas enfermedades se conocen como errores congénitos del metabolismo. Al poco tiempo de nacer un bebé, se evalúa si padece muchas de esas enfermedades metabólicas. Los errores congénitos del metabolismo a veces pueden provocar problemas graves si no se controlan a través de la dieta o con medicación desde muy pronto. Ejemplos de este tipo de trastornos incluyen la galactosemia (los bebés que nacen con este problema no tiene suficiente cantidad de una enzima encargada de descomponer el azúcar de la leche, denominado galactosa) y la fenilcetonuria (este trastorno está provocado por un defecto en la enzima encargada de descomponer el aminoácido fenilalanina, necesario para el crecimiento normal y la fabricación de proteínas). Los jóvenes pueden necesitar seguir una dieta especial y/o tomar medicamentos para controlar problemas metabólicos de nacimiento.
    Diabetes tipo 1. La diabetes tipo 1 ocurre cuando el páncreas no produce o secreta suficiente insulina. Los síntomas de esta enfermedad incluyen orinar en exceso, tener mucha sed y mucha hambre y perder peso. A la larga, esta enfermedad puede provocar problemas renales, dolor provocado por lesiones neuronales, ceguera y enfermedad cardiovascular. Los jóvenes que padecen diabetes tipo 1 necesitan inyectarse insulina regularmente y controlarse la concentración de azúcar en sangre a fin de reducir el riesgo de desarrollar problemas de salud a consecuencia de la diabetes.
    Diabetes tipo 2. La diabetes tipo 2 ocurre cuando el cuerpo no responde a la insulina con normalidad. Los síntomas de este trastorno son parecidos a los de la diabetes tipo 1. Muchos jóvenes y niños que desarrollan este tipo de diabetes tienen sobrepeso, que se cree que desempeña un papel importante en su menor reactividad a la insulina. Algunas personas pueden tratarse eficazmente con cambios dietéticos, ejercicio y medicación por vía oral, pero en otros casos son necesarias las inyecciones de insulina. Controlar la concentración de azúcar en sangre reduce el riesgo de desarrollar los mismos problemas de salud a largo plazo asociados a una diabetes tipo 1 no tratada o mal controlada.