Teoria Celular

 

TEORÍA CELULAR


Célula, es una palabra muy sencilla pero con un gran significado en la historia de la biología. En 1665, el científico inglés Robert Hooke, utilizando un microscopio primitivo, observó en un pedazo de corcho muy delgado pequeñas celdas a las cuales llamó células, hasta este momento dichas celdas no se relacionaban con la vida de las plantas, sino con el almacenamiento de ciertos "jugos". Desde aquí el microscopio comenzó a ser una herramienta esencial en el ámbito científico de la época y en el desarrollo de la biología en general.Luego, muchos otros científicos en otros países durante diecisiete décadas y utilizando el microscopio, lograron perfeccionar el diseño de este instrumento lo que permitió una mejor visualización de las células.


reseña histórica de la teoría celular:

ROBERT HOOKE(1665)
Con sus observaciones postuló el nombre célula para referirse a los compartimentos que encontró en un pedazo de corcho, al observar al microscopio
ANTON VAN LEEUWENHOEK (1673)
Realizó observaciones de microorganismos de charcas, eritrocitos humanos, espermatozoides.
THEODOR SCHWANN (1839)
Postuló el primer concepto sobre la teoría celular . Las células son las parte elementales tanto de plantas como de animales.
RUDOLF VIRCHOW (1850)
Escribió: "Cada animal es la suma de sus unidades vitales, cada una de las cuales contiene todas las características de la vida. Todas las células provienen de otras células".



Los postulados que definen como tal la teoría celular son:
Todos y cada uno de los organismos vivos están constituidos por una (unicelulares) o más células (multicelulares).
Los antecesores de las células, son células preexistentes.

PROPIEDADES DE UN SISTEMA VIVO
1.Nivel de organización: La naturaleza en su afán de reducir los errores que se puedan generar en un sistema vivo, le confiere a las células la propiedad de organizarse a distintos niveles entre los cuales podemos contemplar: la organización de átomos(La célula no es una colección de elementos químicos de la tierra dispuestos aleatoriamente, en realidad es un sistema químico selectivo conformado esencialmente por C, H, O, N, S, P, que son los principales elementos de la vida. Lo anterior revela que el evento celular y su organización no es producto del azar. Por otra parte, la célula se considera en realidad un sistema termodinámico abierto, que toma energía de su entorno para mantener la estructura) en moléculas de tamaño pequeño, éstas a su vez en polímeros gigantes y luego en complejos poliméricos que subsecuentemente conformarán los organelos subcelulares y finalmente la célula como unidad básica estructural y funcional.
2.Nutrición: Las células toman sustancias del medio que utilizan en la obtención y transformación de la energía necesaria para su metabolismo.
3.Crecimiento: También son capaces de utilizar las sustancias que asimilan del medio para sintetizar biomoléculas que contribuyen al aumento de su tamaño y autorreplicación . El crecimiento es por tanto, un aumento en la masa celular como resultado en el incremento del tamaño y/o número de las células individuales. Este crecimiento puede ser uniforme en las diversas partes del cuerpo de un organismo, o diferencial en unas partes, de modo que las proporciones corporales cambian de acuerdo con el crecimiento.
4.Diferenciación: Esta propiedad hace parte del ciclo celular, originando o modificando ciertas estructuras y/o sustancias que conducen a cambios en su morfología y función.
5.Señalización Química: Es una característica que se presenta con mayor frecuencia en los organismos pluricelulares cuyas células requieren de señales químicas que facilitan la comunicación intercelular, la cual permitirá que posteriormente se puedan diferenciar y cumplir con una función determinada.
6.Respuesta a estímulos (Irritabilidad) ocasionados por cambios físicos o químicos en el ambiente interno o externo. La mayoría de las células poseen mecanismos conformados de receptores los cuales le permiten desarrollar cierta sensibilidad a sustancias químicas (como se explicó anteriormente) tales como hormonas, factores de crecimiento, materiales extracelulares, así como también responder de manera específica a compuestos presentes en las superficies de otras células. Las respuestas más comunes a los diferentes estímulos pueden conducir a la alteración de las actividades metabólicas, preparación para la división celular, desplazamiento de un lugar a otro y aún al suicidio (apoptosis).
7.Evolución: Las células son susceptibles de cambios para adquirir nuevas propiedades biológicas que les permitan adaptarse a medios particulares o a su misma supervivencia. Por consiguiente se pueden elaborar árboles filogenéticos que muestran las relaciones existentes entre ellas.
8.Capacidad de autoregulación: Siendo la célula un sistema tan complejo, necesita de ciertos mecanismos de control para corregir errores que se pueden presentar. La autorregulación se hace evidente cuando falla alguno de los puntos de control como en el caso del cáncer. El problema de dichas fallas se debe a que cada uno de los pasos necesarios en determinado proceso celular es esencial (algo así como las argollas en una cadena) ya que es necesario que suceda un paso para que se dé el siguiente, por tanto un error en alguna de las argollas de la cadena debe ser corregido a tiempo para que la célula continúe con su ciclo normal.

ORGANIZACIÓN ESTRUCTURAL DE LAS CÉLULAS

Con el desarrollo de la microscopía, en 1937 Chatton propuso dos términos para designar las clases de células presentes en la naturaleza: células procarióticas y células eucarióticas. Estos términos tienen significado etimológico (pro = antes, karyon = núcleo, eu = verdadero), debido a la estructura que presentaban las células al observarse con detenimiento al microscopio.





estructura celular eucariòtica




estructura celular procariòtica

Los dos tipos de células muestran algunas características similares, tales como:
Poseen un lenguaje genético idéntico.

Ambas tienen rutas metabólicas comunes.

Presentan estructuras similares en algunos de sus componentes. Ej: la membrana celular, la cual funciona como una barrera de permeabilidad selectiva.
Ambos tipos de células pueden estar rodeados por pared celular que proporciona rigidez a las células sin embargo, su composición es diferente.
Los dos tipos celulares tienen una región nuclear donde está el material genético rodeado por el citoplasma. En las procarióticas se caracteriza como un nucleoide sin envoltura, mientras que en las eucarióticas dicha región siempre se encuentra separada de citoplasma por la envoltura nuclear.
Pero también presentan muchas características que las diferencian y por las cuales se genera la división, entre ellas:
CARACTERÍSTICA
PROCARIOTICAS
EUCARIÓTICAS
TAMAÑO CELULAR
1 a 10 mm de diámetro
10 a 100 mm de diámetro
MATERIAL GENÉTICO
Adherido a la membrana plasmática y concentrado en una región denominada Nucleoide
Presente en un núcleo rodeado por una envoltura
CROMOSOMAS
Único, generalmente circular y sin proteínas
Muchos, lineales y con proteínas (histonas y no histonas)
ADN
0.25mm -3mm de longitudpares de bases
En células tan "simples" como la levadura 4,6 mm. de longitud
CITOPLASMA
En gran medida indiferenciado.
Contiene una gran cantidad de estructuras, llamadas organelos subcelulares algunos de ellos con unidad de membrana.
ORGANELOS SUBCELULARES
RibosomasCarente de sistema de citomembranas.
Ribosomas, Sistema de citomembranas (mitocondrias, cloroplastos, retículo endoplasmático, aparato de golgi, vacuolas, lisosomas, citoesqueleto)
PARED CELULAR
Constituído por peptidoglicanos. Excepto en arquea y micoplasmas.
Compuesta principalmete por celulosa, en algunos casos presenta lignina, pectina. Excepto células animales.
MOVILIDAD
Flagelos constituidos por flagelina
Cilios y flagelos constituidos por tubulina con organización 9+2.
EUCARIOTAS Y PROCARIOTAS
Por su estructura se distinguen dos tipos de células: procarióticas y eucarióticas:

-
PROCARIÓTICAS. Muy simples y primitivas. Apenas tienen estructuras en su interior. Se caracterizan por no tener un núcleo propiamente dicho; esto es, no tienen el material genético envuelto en una membrana y separado del resto del citoplasma. Además, su ADN no está asociado a ciertas proteínas como las histonas y está formando un único cromosoma. Son procariotas, entre otras: las bacterias y las cianofíceas.

-
EUCARIÓTICAS: Células características del resto de los organismos unicelulares y pluricelulares, animales y vegetales. Su estructura es más evolucionada y compleja que la de los procariotas. Tienen orgánulos celulares y un núcleo verdadero separado del citoplasma por una envoltura nuclear. Su ADN está asociado a proteínas (histonas y otras) y estructurado en numerosos cromosomas.


ESTRUCTURA GENERAL DE LA CÉLULA EUCARIÓTICA

En toda célula eucariótica vamos a poder distinguir la siguiente
estructura:

- Membrana plasmática
- Citoplasma
- Núcleo

El aspecto de la célula es diferente según se observe al microscopio óptico (
MO) o al electrónico (MET). Al MO observaremos la estructura celular y al MET la ultraestructura.

DIFERENCIAS ENTRE LAS CÉLULAS VEGETALES Y ANIMALES

Por lo general las células vegetales son de mayor tamaño que las animales, tienen plastos y están envueltas en una gruesa pared celular, también llamada pared celulósica o membrana de secreción. Sus vacuolas son de gran tamaño y no tienen centriolos.

ORGÁNULOS DE LA CÉLULA
CÉLULA ANIMAL
1 Membrana plasmática
2 Retículo endoplasmático granular
3 Retículo endoplasmático liso
4 Aparato de Golgi

5 Mitocondria
6 Núcleo
7 Ribosomas
8 Centrosoma (Centriolos)
9 Lisosomas
10 Microtúbulos (citoesqueleto)

CÉLULA VEGETAL
1 Membrana plasmática
2 Retículo endoplasmático granular
3 Retículo endoplasmático liso
4 Aparato de Golgi
5 Mitocondria
6 Núcleo
7 Ribosomas
8 Cloroplasto
9 Pared celulósica
10 Vacuola


BREVE DESCRIPCIÓN DE LA ESTRUCTURA Y FUNCIÓN DE LOS ORGÁNULOS CELULARES

MEMBRANA
Membrana plasmática: Delgada lámina que recubre la célula. Está formada por lípidos, proteínas y oligosacáridos. Regula los intercambios entre la célula y el exterior.
Pared celular: Gruesa capa que recubre las células vegetales. Está formada por celulosa y otras sustancias. Su función es la de proteger la célula vegetal de las alteraciones de la presión osmótica.

CITOPLASMA
Hialoplasma: Es el citoplasma desprovisto de los orgánulos. Se trata de un medio de reacción en el que se realizan importantes reacciones celulares, por ejemplo: la síntesis de proteínas y la glicolisis. Contiene los microtúbulos y microfilamentos que forman el esqueleto celular.
Retículo endoplasmático: Red de membranas intracitoplasmática que separan compartimen-tos en el citoplasma. Ahí dos clases: granular y liso. Sus funciones son: síntesis de oligosacáridos y maduración y transporte de glicoproteínas y proteínas de membrana.Ribosomas: Pequeños gránulos presentes en el citoplasma, también adheridos al retículo endoplasmático granular. Intervienen en los procesos de síntesis de proteínas en el hialoplasma.Aparato de Golgi: Sistema de membranas similar, en cierto modo, al retículo pero sin ribosomas. Sirve para sintetizar, transportar y empaquetar determinadas sustancias elaboradas por la célula y destinadas a ser almacenadas o a la exportación.
Lisosomas: Vesículas que contienen enzimas digestivas. Intervienen en los procesos de degradación de sustancias.
Vacuolas: Estructuras en forma de grandes vesículas. Almacenamiento de sustancias.
Mitocondrias: En ellas se extrae la energía química contenida en las sustancias orgánicas (ciclo de Krebs y cadena respiratoria).Centrosoma: Interviene en los procesos de división celular y en el movimiento celular por cilios y flagelos.Plastos: Orgánulos característicos de las células vegetales. En los cloroplastos se realiza la fotosíntesis.
NÚCLEO
Contiene la información celular.
Nucleoplasma: En él se realizan las funciones de replicación y transcripción de la información celular. Esto es, la síntesis de ADN y ARN.
Nucléolo: Síntesis del ARN de los ribosomas.
Envoltura nuclear: Por sus poros se realizan los intercambios de sustancias entre el núcleo y el hialoplasma.

Descubrimiento de la célula
La teoría celular dice que: "todos los organismos vivos están compuestos de una o más células" y que éstas son las unidades más pequeñas que pueden llamarse vivas.

En 1590 los hermanos Hans y Zacarías Hanssen (holandeses), conectaron dos lentes mediante un tubo, creando el primer microscopio.

En 1665 el inglés Robert Hooke observó con un primitivo microscopio, láminas muy finas de corcho.







Presentó las láminas dibujadas a la Real Sociedad de Londres, describió lo observado con las siguientes palabras: “el corcho está formado por celdas no muy profundas, que consisten en pequeñas cajas” Utilizó el término celda porque los compartimentos que vio en el corcho le recordaron pequeños cuartos, estos compartimentos en el corcho estaban vacíos.

En 1675, Antonie van Leeuwenhoek (holandés) descubrió "animales microscópicos" en el agua estancada.




Postulados de la teoría celular
Los postulados de la teoría celular de nuestra época incluyen las ideas expuestas por los mencionados investigadores:
1. Todos los seres vivos están compuestos de células y productos celulares.
2. Sólo se forman células nuevas a partir de células preexistentes.
3. Todas las células actuales son descendientes de células ancestrales.

Concepto actual de célula
La célula es la unidad más pequeña de materia viva, capaz de llevar a cabo todas las actividades necesarias para el mantenimiento de la vida. Tiene todos los componentes físicos y químicos necesarios para su propio mantenimiento, crecimiento y reproducción.

Bloque III.."Reconoce A La Cèlula Como Unidad de Vida".

Bloque III...

Cloroplastos: son orgánulos aún mayores y se encuentran en las células de plantas y algas, pero no en las de animales y hongos. Su estructura es todavía más compleja que la mitocondrial; además de las dos membranas de la envoltura, tienen numerosos sacos internos formados por membranas que encierran el pigmento verde llamado clorofila. Desde el punto de vista de la vida terrestre, los cloroplastos desempeñan una función aún más esencial que la de las mitocondrias: en ellos ocurre la fotosíntesis. Este proceso, acompañado de liberación de oxígeno, consiste en utilizar la energía de la luz solar para activar la síntesis de moléculas de carbono pequeñas y ricas en energía. De esta forma, los cloroplastos producen tanto las moléculas nutritivas como el oxígeno que utilizan las mitocondrias.
Vacuolas: son unos saquitos de diversos tamaños y formas rodeados por una membrana. Generalmente se pueden ver en el citoplasma de las células eucarióticas, sobre todo en las células vegetales. Se encargan de transportar y almacenar materiales ingeridos, así como productos de desecho y agua.
Centríolos y cuerpos basales: estas estructuras, a diferencia de las anteriores, no tienen membrana. Casi siempre se presentan de a pares y se hacen visibles cuando la célula entra en división, en una posición perpendicular entre ambos. De estructura tubular y hueca, sus paredes están constituidas por microtúbulos, de los que emerge el aparato miótico necesario para la división celular.Los cuerpos basales solo se diferencian de los centríolos en función, no así en forma.
Microtúbulos: son cilindros muy delgados que carecen de membrana. Además de ser los componentes básicos de los centríolos, cuerpos basales, cilios y flagelos, tienen la función de conservar y regular la forma celular y los movimientos intracelulares.
Microfilamentos: son finos hilos de naturaleza proteica y, al igual que los microtúbulos, están involucrados en la variación de la forma celular y movimientos intracelulares.
Química interna de la célula
Una de las principales cualidades de las células es su capacidad de transformar un tipo de energía en otro. Este conjunto de reacciones químicas que las células hacen para su crecimiento, irritabilidad, movimiento, reparación y reproducción, se denomina metabolismo celular, como mencionamos anteriormente.
La célula utiliza las sustancias que penetran en ella como materia prima para construir otras sustancias más complejas, o como combustible para obtener energía. Los componentes, como aminoácidos, lípidos, monosacáridos, agua y los elementos minerales, son usados para formar sustancias orgánicas más complejas y mantener toda la organización celular. Por ejemplo, los aminoácidos son encadenados para producir moléculas proteicas (síntesis), las que son ordenadas para formar estructuras más complejas. Este proceso es lo que se conoce como anabolismo, y el proceso de destrucción se denomina catabolismo. El anabolismo es la formación de compuestos a partir de células simples; y el catabolismo es el proceso productor de energía contrario al anterior; es decir, va de moléculas complejas a moléculas simples.
Todos los seres vivos tienen moléculas orgánicas, como proteínas, hidratos de carbono, lípidos y ácido nucleico. Pero también poseen moléculas inorgánicas, como el agua y las sales minerales; de hecho, alrededor de dos tercios del peso total de tu cuerpo (80 por ciento) es agua, elemento que cumple varias funciones en los sistemas vivos, permitiendo que ocurran todas las reacciones químicas del metabolismo celular.


Diferencias entre las células animales y vegetales

La célula animal se diferencia de otras eucariotas, principalmente de las células vegetales, en que carece de pared celular y cloroplastos, y que posee vacuolas más pequeñas. Debido a la ausencia de una pared celular rígida, las células animales pueden adoptar una gran variedad de formas, e incluso una célula fagocitaria puede de hecho rodear y engullir otras estructuras.

Célula animal
*  No tiene pared celular (membrana celulósica)
*  Presentan diversas formas de acuerdo con su función.
*  No tiene plastos
*  Puede tener vacuolas pero no son muy grandes.
*  Presenta centríolos que son agregados de microtúbulos cilíndricos que forman los cilios y los flagelos y facilitan la división celular.
Célula vegetal
*  Presentan una pared celular compuesta principalmente de celulosa) que da mayor resistencia a la célula.
*  Disponen de plastos como cloroplastos (orgánulo capaz de realizar la fotosíntesis), cromoplastos (orgánulos que acumulan pigmentos) o leucoplastos (orgánulos que acumulan el almidón fabricado en la fotosíntesis)..
*  Poseen Vacuolas de gran tamaño que acumulan sustancias de reserva o de desecho producidas por la célula.
*  Presentan Plasmodesmos que son conexiones citoplasmáticas que permiten la circulación directa de las sustancias del citoplasma de una célula a otra.


La Célula
Unidad anatómica fundamental de todos los organismos vivos, generalmente microscópica, formada por citoplasma, uno o más núcleos y una membrana que la rodea.
La celula es la estructura más pequeña capaz de realizar por sí misma las tres funciones vitales: nutrición, relación y reproducción. Todos los organismos vivos están formados por celulas. Algunos organismos microscópicos, como las bacterias y los protozoos, son unicelulares, lo que significa que están formados por una sola celula. Las plantas, los animales y los hongos son organismos pluricelulares, es decir, están formados por numerosas celulas que actúan de forma coordinada
El tamaño de las celulas es muy variable. La más pequeña, un tipo de bacteria denominada micoplasma, mide menos de una micra de diámetro. Entre las de mayor tamaño destacan las celulas nerviosas que descienden por el cuello de una jirafa, que pueden alcanzar más de 3 m de longitud. Las celulas humanas presentan también una amplia variedad de tamaños, desde los pequeños glóbulos rojos que miden 0,00076 mm hasta las hepáticas que pueden alcanzar un tamaño diez veces mayor. Aproximadamente 10.000 celulas humanas de tamaño medio tienen el mismo tamaño que la cabeza de un alfiler.
Las celulas presentan una amplia variedad de formas. Las de las plantas tienen, por lo general, forma poligonal. En los seres humanos, las celulas de las capas más superficiales de la piel son planas, mientras que las musculares son largas y delgadas. Algunas celulas nerviosas, con sus prolongaciones delgadas en forma de tentáculos, recuerdan a un pulpo.

En los organismos pluricelulares la forma de la celula está adaptada, por lo general, a su función. Por ejemplo, las celulas planas de la piel forman una capa compacta que protege a los tejidos subyacentes de la invasión de bacterias. Las musculares, delgadas y largas, se contraen rápidamente para mover los huesos. Las numerosas extensiones de una celula nerviosa le permiten conectar con otras celulas nerviosas para enviar y recibir mensajes con rapidez y eficacia.

 
El cuerpo humano es un conjunto formado por cincuenta billones de células, agrupadas en tejidos y organizadas
en diferentes sistemas. Si quisieras formar un cuerpo podrías comprar los elementos básicos en cualquier parte por muy poco dinero; pero la vida que albergan estas células reunidas con un propósito concreto, lo convierten en algo de valor incalculable.
Nuestro organismo parece saber que de la unión nace la fuerza, pues las células se organizan en tejidos, órganos, aparatos y sistemas para realizar sus funciones.
Sin embargo, y a pesar de su enorme rendimiento, el cuerpo humano sigue en constante evolución, sobre todo si es un recién llegado al planeta. Te damos un ejemplo: imagina que la vida se instauró en la Tierra hace 24 horas: el ser humano apenas ha vivido los últimos tres segundos.
Si bien tu cuerpo funciona gracias a la actividad de diversos sistemas, si no fuera por la célula nada andaría bien dentro de ti. Es prácticamente la primera piedra para formar la estructura de una casa, la unidad básica de tu organismo, capaz de cumplir todas las funciones necesarias para el diario vivir: crecer, reproducirse, metabolizar, responder a estímulos y diferenciarse. Es muy pequeña, invisible al ojo humano, pero posee la habilidad de trabajar independientemente.
Para poder comprender cómo funciona el cuerpo humano, cómo se desarrolla y envejece y qué falla en caso de enfermedad, es imprescindible conocer las células que lo constituyen.
Todos los organismos vivos están formados por células, y en general se dice que ninguno es un ser vivo si no consta al menos de una. Algunos organismos microscópicos, como bacterias y protozoos, son células únicas (unicelulares), mientras que los animales y plantas están formados por muchos millones de células organizadas en tejidos y órganos.
Variedad celular
Las células tienen una gran variedad de tamaños y formas, dependiendo principalmente de la adaptación a diferentes ambientes o funciones. Van desde unas décimas de micrón -la milésima parte de un milímetro- en las bacterias, hasta unos cuantos centímetros en algunas algas marinas.
En el interior de las células tienen lugar numerosas reacciones químicas que les permiten crecer, producir energía y eliminar residuos. El conjunto de estas reacciones se llama metabolismo (término que proviene de una palabra griega que significa cambio).
Las células pueden dividirse en dos grandes grupos: procarióticas y eucarióticas.
Entre ellas hay diferencias fundamentales en cuanto a tamaño y organización interna. Las procarióticas, que comprenden bacterias y cianobacterias (antes llamadas algas verdeazuladas), son células pequeñas y de estructura sencilla; el material genético está concentrado en una región, pero no hay ninguna membrana que separe esa zona del resto de la célula. Las eucarióticas, que forman todos los demás organismos vivos, incluidos protozoos, plantas, hongos y animales, son mucho mayores y tienen el material genético envuelto por una membrana que forma el núcleo. De hecho, el término eucariótico deriva del griego “núcleo verdadero”, mientras que procariótico significa “antes del núcleo”.
Célula eucariótica: nuestra célula
Las células que existen en nuestro organismo se destacan por tener una gran cantidad de formas y funciones específicas, pero con una estructura interna común. Uno de sus componentes es la membrana plasmática, que se encarga de mantener y delimitar lo que entra y sale de la célula, siendo la frontera entre lo intracelular y lo extracelular. Como el resto de las membranas celulares, posee una composición química de fosfolípidos y proteínas.
Casi todas las células bacterianas, y también vegetales, están además encapsuladas en una pared celular gruesa y sólida compuesta de polisacáridos (el mayoritario en las plantas superiores es la celulosa). La pared celular, que es externa a la membrana plasmática, mantiene la forma de la célula y la protege de daños mecánicos, pero también limita el movimiento celular y la entrada y salida de materiales. Claro que en el caso de las células humanas, estas no tienen pared celular.
  • Orgánulos celulares
  • Organoides celulares
Orgánulos celulares
Por su parte, el núcleo es el centro de control de la célula, donde se encuentra la mayor parte de la información hereditaria de esta. Delimitado por una membrana doble o carioteca, el núcleo contiene un material fibrilar llamado cromatina, la cual se condensa cada vez que la célula se divide y da origen a los cromosomas, que suelen aparecer dispuestos en pares idénticos.
Al interior del núcleo se encuentra el nucléolo, que contiene gran cantidad de ácido ribonucleico ribosomal, precursor de la composición de los ribosomas que hay en el citoplasma, que intervienen en la síntesis de proteínas. El número y tamaño de estos varía según las necesidades ribosomales de cada célula. El citoplasma es la parte clara que comprende todo el volumen de la célula, salvo el núcleo. Tiene una consistencia viscosa y consta de dos partes esenciales: citoplasma fundamental y organoides celulares e inclusiones. La primera parte se reduce a una solución acuosa formada por varios iones y sustancias orgánicas que la célula incorpora para los procesos biológicos que se realizan en su interior, además de productos de desecho que elimina, consecuencia del mismo proceso.
Organoides
En su segunda parte se distinguen varias estructuras que es necesario explicar:
Aparato de Golgi: es un complejo sistema compuesto de vesículas y sacos membranosos, que en las células vegetales se llama dictiosoma. Una de sus funciones principales es la secreción de productos celulares, como hormonas, enzimas digestivas, materiales para construir la pared, entre otros.
Retículo endoplasmático: es una red de túbulos y sacos planos y curvos encargada de transportar materiales a través de la célula; su parte dura es el lugar de fijación de los ribosomas; el retículo liso es el sitio donde se produce la grasa y se almacena el calcio. El retículo endoplasmático está disperso por todo el citoplasma. Los materiales sintetizados son almacenados y luego trasladados a su destino celular.
Lisosomas: son organoides limitados por una membrana; las poderosas enzimas que contiene degradan los materiales peligrosos absorbidos en la célula, para luego liberarlos a través de la membrana celular. Es decir, los lisosomas constituyen el sistema digestivo de la célula.
Mitocondrias: son conocidas como la central eléctrica de la célula, permitiendo la respiración y la descomposición de grasas y azúcares para producir energía. Poseen una doble membrana: membrana externa, que da hacia el citoplasma, y membrana interna, que da hacia la matriz o interior de la mitocondria. Su principal función es aprovechar la energía que se obtiene de los diversos nutrientes y transmitirla a una molécula capaz de almacenarla, el ATP (adenosintrifosfato). Esta energía se obtiene mediante la deshidrogenización de los combustibles. El hidrógeno sustraído es transportado a través de varias moléculas, que constituyen la cadena respiratoria, hasta el oxígeno, con el que forma agua. En el proceso de respiración se genera energía, que es acumulada por el ATP, el cual puede ser enviado a cualquier parte de la célula que necesite aporte energético; allí el ATP se descompone y la libera.